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S u m m a r y  

Pulsed electromagnetic fields (PEMF) influence the extracellular matrix metabolism of a diverse range of skeletal 
tissues. This study focuses upon the effect of PEMF on the composition and molecular structure of cartilage 
proteoglycans. Sixteen-day-old embryonic chick sterna were explanted to culture and exposed to a PEMF for 3 h/day 
for 48 h. PEMF treatment did not affect the DNA content of explants but stimulated elevation of glycosaminoglycan 
content in the explant and conserved the tissue's histological integrity. The glycosaminoglycans in sterna exposed to 
PEMF were indistinguishable from those in controls in their composition of chondroitin sulfate resulting from 
chondroitinase ABC digestion. Specific examination with PSI-sulfate labels showed that PEMF treatment significantly 
suppressed both the degradation of pre-existing glycosaminoglycans biosynthetically labeled in ovo and the synthesis 
of new PSI-sulfated glycosaminoglycans. The average size and aggregating ability of pre-existing and newly synthesized 
[35S]-sulfated proteoglycans extracted with 4 M guanidinium chloride from PEMF-treated cartilage explants were 
identical to controls. The chain length and degree of sulfation of PSI-sulfated glycosaminoglycans also were identical 
in control and PEMF-treated cultures. PEMF treatment also reduced the amount of both unlabeled glycosaminoglycans 
and labeled pre-existing and newly synthesized pS]-sulfated glycosaminoglycans recovered from the nutrient media. 
[35S]-Sulfated proteoglycans released to the media of both control and PEMF-treated cultures were mostly degradation 
products although their glycosaminoglycan chain size was unchanged. These results demonstrate that exposure of 
embryonic chick cartilage explants to PEMF for 3 h/day maintains a balanced proteoglycan composition by 
down-regulating its turnover without affecting either molecular structure or function. 
Key words: Pulsed electromagnetic fields, Cartilage extracellular matrix, Proteoglycan, Glycosaminoglycan. 

I n t r o d u c t i o n  

CARTILAGE EXTRACELLULAR MATRIX establishes a 
highly concent ra ted  gel of proteoglycan immobi- 
lized within a dense network of collagen fibrils [1]. 
Proteoglycans are high molecular  weight mol- 
ecules composed of a core protein to which a large 
number  of negatively charged and extremely 
hydrophil ic glycosaminoglycan chains are a t tached 
covalently. Under  normal  physiological condit ions 
sulthted proteoglycans in teract  with hyaluronic  
acid through one end of the protein co r e  to form 
large mult imolecular  aggregates [2--4]. The high 
concent ra t ion  and extreme hydrophil ici ty of pro- 
teoglycan aggregates create swelling pressure 
within the extracel lular  matr ix which is con- 
strained by a relatively inextensible collagen 
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network. The associat ion between proteoglycans 
and collagens provides a r t icu la r  carti lage with the 
unique physical propert ies  of reversible compress- 
ibility and tensile s t rength  enabling it to both  
withstand mechanical  stress and protect  under- 
lying bone [5]. Loss ofproteoglycan associated with 
osteoar thr i t i s  results  in a disruption of car t i lage 
integri ty  and an inevitable loss of biomechanical  
funct ion [6]. Maintenance  and/or  res tora t ion of a 
funct ional  extracel lular  matr ix  is of significant 
interest  to the repair  o f  damaged cartilage. 

Pulsed electromagnetic  fields (PEMF) promote  
f racture  healing and are widely applied to the 
successful clinical t rea tment  of delayed- or non- 
union f rac ture  in pat ients  [7-12]. Al though the 
biological mechanism of act ion of e lectr ical ly  
induced osteogenesis is unclear, PEMF is general ly 
thought  to st imulate endochondral  ossification by 
init iat ing a series of events in cartilage. Consider- 
able evidence has accumulated indicating that 
PEMF affects the cytodifferentiat ion and pheno- 
typic expression of cart i lage in vitro [13-15] and 
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in vivo [16-17]. Of particular interest is the 
ability of PEMF to modulate cartilage extra- 
cellular matrix composition. In most studies, 
proteoglycan content and/or synthesis is elevated 
in response to PEMF treatment [16,18-21]. 
However, in other studies glycosaminoglycan 
synthesis is decreased [22-24] or unaffected [25]. 
Conflicting effects of PEMF on collagen metab- 
olism [19, 22-24], alkaline phosphatase activity 
[23, 26], cell differentiation [15, 22-23, 25, 26], cyclic 
AMP synthesis [26-27] and calcium incorporation 
[13, 15-16, 28] have also been reported. Such a 
wide variation in results can be attributed to 
the diversity of both PEMF driving signals 
employed and range of applications. Similarly, 
many different culture models of cartilage have 
been studied, including embryonic chick sternum 
or limb bud, rat or rabbit costal chondral junction, 
rabbit, bovine or human articular cartilage or 
bovine growth plate etc. Nevertheless, such 
responses suggest that with the appropriate signal 
and targeted cell population, PEMF could 
modulate cartilage extracellular matrix by influ- 
encing chondrocyte behavior. In recent studies, 
PEMF has been shown to preserve cartilage 
extracellular matrix integrity [29-31] and stimu- 
late cartilage extracellular matrix restoration by 
mature bovine joints [21] and human osteoarthritic 
cartilage explants [32]. The preliminary clinical 
application of PEMF stimulation to some articular 
cartilage diseases is encouraging [33]. There 
is no evidence that PEMF evokes the appearance 
of abnormal cell phenotypes within a treated 
population. 

Previously we have investigated the influence of 
different PEMF forms and treatment regimens on 
cell proliferation and sulfated glycosaminoglycan 
synthesis and degradation by embryonic chick 
sternal cartilage explanted to culture [29-31]. The 
results demonstrate that PEMF is capable of 
modulating the extracellular matrix composition 
of developing cartilage explants by suppressing 
both degradation and synthesis of sulfated gly- 
cosaminoglycans and these effects are dose-related 
[31~-31]. The present studies have further analyzed 
the optimal treatment regimen, 3 h/day, of one 
PEMF signal [31] on the turnover of both total and 
[3aS]-sulfated glycosaminoglycans and the structure 
of pS]-sulfated proteoglycans in embryonic chick 
sternal cartilage explanted to culture. Results 
confirmed previous findings and further demon- 
strated that the decreased synthesis and degra- 
dation of sulfated glycosaminoglycans are 
accompanied by preservation of this component 
within the matrix following PEMF treatment, 
and that the treatment does not affect the structure 

and function of either newly synthesized or 
pre-existing sulfated proteoglycans. 

M a t e r i a l s  a n d  M e t h o d s  

MATERIALS 

Ham's F12 medium was from Sigma Chemical 
Co., Poole, Dorset, U.K. Fetal calf serum was from 
ICN Flow, Scotland, U.K. Carrier-free [35S/sulfuric 
acid was from Amersham International plc, 
Amersham, U.K. Hyaluronic acid from human 
umbilical cord, chondroitin sulfate from whale or 
shark cartilage, and keratan sulfate from bovine 
cornea were from Sigma Chemical Co. Papain was 
from Hopkin & Williams, Essex, U.K. Chondroitin 
ABC lyase from Proteus vulgaris was from ICN 
Biochemicals, Division of Biochemical Inc., Cleve- 
land, OH, U.S.A. Dimethylmethylene Blue was 
from Aldrich Chemical Co., Gillingham, Dorset, 
U.K. Streptomyces griseus pronase was from 
Boehringer Mannheim, Lewes, East Sussex, U.K. 
Dowex 1 (AG1-X2, 200-400 mesh) was from Bio-Rad 
Laboratories Ltd., Watford, Herts, U.K. Sepharose 
CL-2B and Sephacryl S-200 were from Pharmacia, 
Uppsala, Sweden. DNP-alanine was from Sigma 
Chemical Co. All other reagents were of analytical 
reagent grade. 

ORGAN CULTURE 

Sixteen-day-old White Leghorn embryonic chick 
sternal cartilage was used in all experiments. 
Sterna were dissected free of surrounding and 
adherent tissues in cold calcium- and magnesium- 
free Tyrode's solution, pH 7.4. Equal numbers of 
explants were randomly placed to control and 
experimental culture dishes (plastic tissue, Sterilin 
Ltd, Hounslow, U.K.) according to the experimen- 
tal groups described below. Cultures were main- 
tained in Ham's F12 nutrient medium 
supplemented with 10% fetal calf serum, 1 mM 
glutamine, 0.1 mg/ml ascorbate and 50units/ml 
penicillin and streptomycin (ICN Flow, Scotland, 
U.K.) in a humidified atmosphere at 37°C under 5% 
CO2 in air for 48 h [30, 34]. As generally agreed in 
organ culture of embryonic chick cartilage [35-36], 
sternal explants maintain the differentiated pheno- 
type of chondrocytes and readily proliferate and 
increase in size and extracellular matrix content 
with time under the experimental conditions. 
Metabolic activity of the cultured tissue is high 
because of its embryonic nature. However, in terms 
of proteoglycan synthesis, the rate of incorporation 
of [35S]-sulfate is constant with time over the 
indicated incubation period [30]. 
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P E M F  T R E A T M E N T  

The apparatus  for t r ea tmen t  exposure of cul tures  
to P E M F  was provided by Electro-Biology, Inc., 
Parsippany, NJ, U.S.A. This apparatus  consists of 
an electr ic  control  uni t  and a pair  of hor izonta l ly  
placed c i rcular  Helmhol tz  magnet ic  coils (14 cm 
diameter, 13 cm intercoi l  distance) mounted  on a 
plastic framework. The P E M F  signal consists of 
30 ms dura t ion bursts  of pulses repeated at 1.5 Hz 
[Fig. l(a)]. During each pulse the magnetic  field 
rises from 0 to 1 gauss in 230 #s and then re turns  
to 0 gauss in 30 #s [Fig. l(b)]. Cul ture  dishes were 
placed between the coils and stacked as close as 
possible to the ver t ical  and hor izonta l  center. 
Exper imenta l  cul tures  were exposed to P E M F  for 
3 h/day for the dura t ion of the cul ture  period. This 
t rea tment  was found to be the most effective from 
our  previous work [31]. Control  cul tures were 
maintained within the coils and under  identical  
environmental  condit ions but in the absence of 
PEME 

C O N T E N T  O F  G L Y C O S A M I N O G L Y C A N S  

Freshly isolated embryonic chick s ternal  ex- 
plants were placed into 35 mm tissue cul ture  dishes 
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FIG. 1. Schematic representation of the pulsed electro- 
magnetic field. PEMF signal employed in this study 
consists of 30 ms duration bursts of pulses repeated at 
1.5 Hz (a). During each pulse the magnetic field rises 
from 0 to 1 gauss in 230 #s and then returns to 0 gauss 
in 30 ps (b). Sternal cartilage explanted to culture for 
48 h were exposed to this signal for 3 h per day. 

each conta ining three  s te rna  and 2 ml of the above 
nu t r ien t  medium. The cul ture  dishes were ran- 
domly designated e i ther  control  or experimental ,  
all in triplicate,  and incubated  for 48 h in the 
absence or presence of P E M F  treatment .  Explants  
and media were recovered separately at the end of 
the cul ture  period. Glycosaminoglycans e i ther  
re ta ined by the explants  or released into the media 
were analyzed by reac t ion  with dimethylmethylene 
blue following papain digestion [37]. Chondroi t in  
sulfate from shark and whale was used as the 
s tandard  to cal ibrate the  assay. Port ions of papain 
digest were fu r the r  t rea ted  with chondroi t inase  
ABC to determine the propor t ion  of chondroi t in  
sulfate in the mixture  [37-38]. 

L A B E L I N G  OF S U L F A T E D  G L Y C O S A M I N O G L Y C A N S  

To determine the synthesis of sulfated proteogly- 
can in vitro, 5 pCi/ml carrier-free [35S]sulfuric acid 
was added to control  and experimental  cul tures for 
the final 24 h of the  2-day cul ture  period. At the end 
of the  cul ture  period, explants and nu t r ien t  media 
were harvested separately and the incorpora t ion  of 
[8~S]-sulfate into sulfated proteoglycans analyzed. 
In separate experiments,  10 pCi carrier-free [35S]- 
sulfuric acid in 100 #l distilled water was adminis- 
tered onto the chorioal lantoic  membrane th rough  
a small hole in the egg shell on the sixth day of 
embryonic development. Following adminis t ra t ion 
of isotope, the hole in the shell was sealed with 
t ransparent  adhesive tape and eggs were re tu rned  
to the incubator  to permit  cont inued development 
[39-40]. Ten days later, the s terna  were isolated 
from these biosynthet ical ly  radiolabeled embryos 
and analyzed for [35S]-sulfated proteoglycan content  
ei ther  immediately or following explant cul ture  for 
2 days in the presence and absence of PEMF. 
Explants  and nu t r ien t  media were again harvested 
and analyzed separately. 

T U R N O V E R  OF S U L F A T E D  G L Y C O S A M I N O G L Y C A N S  

Quanti tat ive analysis of sulfated glycosaminogly- 
can turnover  was studied by determining the rates 
of in vitro incorpora t ion  of [35S]-sulfate into 
glycosaminoglycans and in vitro breakdown of 
pre-existing [35S]-sulfated glycosaminoglycans la- 
beled in ovo as previously described [30, 39]. In both 
synthesis and degradat ion experiments, each 
sample comprised three s terna which were cul- 
tured in a 35 mm tissue cul ture  dish containing 
2 ml cul ture  medium. All t reatments  were per- 
formed in at least triplicate. At the end of the 
cul ture  period, PSI-sulfated glycosaminoglycans 
ei ther  remaining in the explants or released into 
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t he~media  were determined by ion exchange 
chromatography on Dowex 1 (1 × 2-400) following 
Streptomyces griseus pronase digestion of the 
samples. 

EXTRACTION OF SULFATED PROTEOGLYCANS 

Separate experiments were performed to analyze 
the effect of PEMF on the structure and function 
of [~S]-sulfated proteoglycans. Embryonic chick 
sternal cartilage was labeled for the newly 
synthesized and pre-existing sulfated proteogly- 
cans and cultured with or without  PEMF 
treatment  in essentially the same way as the above 
described methods except that  each culture was 
composed of 20 sterna and maintained in a 60 mm 
tissue culture dish containing 10 ml medium. The 
recovered explants were sliced into small pieces 
with a scalpel and extracted twice with 10 times 
their  wet weight of 4 M guanidinium chloride in 
0.05 M sodium acetate buffer, pH 5.8, at 4°C for 24 h 
under continuous agitation. Extracts were cen- 
trifuged at 1000 g for 15 min, supernatant  retained 
and residues washed once with small volume of 
cold buffered 4 M guanidinium chloride. Extracts 
and residual washes were pooled and the residues 
were digested with papain in 0.05 M phosphate 
buffer, pH 6.5, containing 2 mM N-acetylcysteine 
and 2 mM EDTA at 65°C for 2 h [41]. Media, extracts 
and residues were dialyzed against 0.01 M sodium 
acetate buffer, pH 6.8 at 4°C to remove unbound 
[~S]-sulfate and re-associate proteoglycans. Pep- 
statin A (1 ttg/ml), 1,10-phenanthroline (1 mM), 
iodoacetic acid (1 mM), and phenylmethanesulpho- 
nyl fluoride (1 mM) were present as proteinase 
inhibitors in all extraction and dialysis buffers. 
Samples were analyzed for total  [35S]-sulfate 
incorporation into sulfated proteoglycans either 
retained within the explants or released into the 
media using an LKB 1214 Rackbeta Liquid 
Scintillation Counter and an aqueous ACSII 
counting scinti l lant  (Amersham International ,  
Amersham, U.K.). 

GEL FILTRATION CHROMATOGRAPHY 

Molecular size distribution of [35S]-sulfated 
proteoglycans in explants and media was deter- 
mined by gel chromatography on Sepharose 
CL-2B columns (100 cm × 0.66 cm analyt ical  
column, Whatman, Kent, U.K.) under dissociative 
and associative conditions [42-43]. Under dissocia- 
tive Conditions, 1 ml of dialyzed sample was applied 
to the column at room temperature and eluted 
with 0.5 M sodium acetate buffer containing 4 M 
guanidinium chloride, pH 7.0, at 3ml/h. Under 

associative conditions, samples were mixed with 
hyaluronic acid (30 #g/ml) at 4°C for 4 h and then 
eluted with 0.5 M sodium acetate buffer, pH 7.0. 
The size distribution of glycosaminoglycan chains 
was determined by gel chromatography on Sep- 
hacryl  S-200 (100 cm× 0.66 cm analyt ical  column, 
Whatman) [44]. Peak fractions eluted from Sepha- 
rose CL-2B columns under  associative conditions 
were pooled, digested with papain at 65°C over- 
night, applied to Sephacryl S-200 columns and then 
eluted at room temperature with 0.5 M sodium 
acetate buffer, pH 7.0, at 1.5 ml/h. Fraction of 0.5 ml 
was collected and aliquot analyzed for [35S]- 
sulfate radioactivity. Proteoglycan aggregate and 
DNP-alanine were used as markers of the void (Vo) 
and total  (Vt) volumes of the columns. The 
proteoglycan aggregate prepared from pig laryn- 
geal cartilage was a gift from Michael T. Bayliss, 
Kennedy Insti tute of Rheumatology, London, U.K. 

CELLULOSE ACETATE E L E C T R O P H O R E S I S  OF 

GLYCOSAMINOGLYCANS 

The degree of sulfation and charge density of 
the sulfated glycosaminoglycans were determined 
by cellulose acetate electrophoresis [45]. Peak 
fractions eluted from the Sephacryl S-200 column 
were pooled, dialyzed against distilled water at 
4°C overnight and lyophilized. Lyophilized samples 
were re-dissolved in distilled water. Duplicate 
samples were spotted onto Cellogel strips 
(57 mm × 140 mm, Whatman, Chemetron, Italy) and 
subjected to electrophoresis in 0.1M KH2PO4/ 
0.1M HC1, pH 2.0, with a potential  gradient of 
5 V/cm for 3 h. Hyaluronic acid, chondroitin sulfate 
and keratan sulfate were included as standards. 
Following electrophoresis, one strip was cut into 
0.25cm sections and analyzed for radio- 
activity. The other was stained with 0.02% alcian 
blue in 0.05 M MgC12/0.05 M sodium acetate buffer, 
pH 5.8, for 45 min at room temperature and then 
destained in the same buffer without  alcian blue. 

HISTOLOGICAL P R O C E D U R E S  

Sterna from 16-day-old chick embryos either 
freshly dissected or cultured for 48 h in the absence 
or presence of PEMF treatment  were fixed for 24 h 
in buffered formaldehyde sublimate. Following 
s tandard histological procedures, tissues were 
embedded in paraffin wax, serially sectioned at 
7 pm and stained with safranin O and Mayer's 
haematoxylin. 



O s t e o a r t h r i t i s  a n d  C a r t i l a g e  Vol .  4, No .  1 67 

6 
.< 
z 

3.0 (a} 

2.5 

2 .0-  

1.5- 

1.0- 

0 . 5 -  

50 

</y/~ : ~ . / /  

T ~ 

/,~>////. 

",~/d;J~/, 

• z " V ' ~ " - #  

, . X . X ( / / / z  

Day 0 D a y 2  

(b) 

z 

80 

6 

20 

¢~ 10 

2.0 

0.0 • 0 0.0 

Z 

1.5 

T _ 6 1.0 //'//~.~ ~ 
, 

0 5  

Day 0 Day 2 

(c) 

Day 2 Day 2 Day 2 

. . / . . , . . , .  

. . . . .  . . . . . .  
i 

- -  YF'~'h'A,Z4 
~ Y / . / / y / /  

":.(~.%.S 
£4~ "::'A 
, A  . > ~ / . 5  

Day 0 
FIG. 2. DNA and glycosaminoglycan contents of explant cultures. Sternal cartilage was explanted to culture for 2 days. 
DNA content (a) and the amount of glycosaminoglycan in the recoveries from explants (b) and media (c) were determined 
at the beginning (day 0) and the end of the experiment (day 2) in either the absence (hatched columns) or presence 
of PEMF (solid columns). All data are expressed as means _ S.D. of at least three measurements. 

OTHER ANALYSES 

DNA content  of s ternal  cartilage was measured 
by a fluorometric method of Royce and Lowther 
[46]. Briefly, aliquot from papain or pronase di- 
gests of cartilage explants prepared in all of the 
above described quantitative experiments was 
pre-treated with RNase from bovine pancreas 
[Sigma Chemical Co.] and then mixed with 
ethidium bromide. The content  of DNA was 
estimated from the intensi ty of fluorescence 
emitted by ethidium bromide intercalated into 
DNA. Statist ical  analysis was performed using the 
Student 's t-test. 

R e s u l t s  

EFFECTS OF PEMF ON THE CONTENT OF 
GLYCOSAMINOGLYCANS 

The amount  of DNA and glycosaminoglycan in 
the tissue at the beginning (day 0) and the end of 
the experimental t reatment  (day 2) was determined 
and, together with the amount  of glyc0saminogly- 
can released from the explant into the medium, is 
summarized in Fig. 2. Control cultures showed a 
17.5% increase in the amount  of DNA content  per 
initial wet weight after the culture period under 
the experimental conditions ( P <  0.01). PEMF 
treatment  of 3 h/day for 2 days did not cause any 
difference from controls in DNA content  [Fig. 2(a)]. 
Thus, the observed results to be described are 
all expressed with reference to DNA content  to 
avoid artificial effects of each sample's relative 
cellularity. 

Glycosaminoglycan content  retained by control  
explants [Fig. 2(b)] was increased by 25.7% after 2 
days in culture (P < 0.05) and glycosaminoglycan 
content  released from explants to media during 
the culture period [Fig. 2(c)] was 5.1% of the total. 
After the exposure of cultures to PEMF for the 
same period, glycosaminoglycan content retained 
by the explants was 21.4% higher  than in controls 
(P < 0.05) whereas glycosaminoglycans released to 
the media were 30.6% lower compared to controls 
(P < 0.02). As a result, PEMF treatment promoted 
a net  production of glycosaminoglycans in the 
matrix of the tissue examined. 

The composition of glycosaminoglycans in pa- 
pain digests of cartilage explants was determined 
by chondroitin ABC lyase digestion. Of gly- 
cosaminoglycans from day 0 explant 92.6 ± 0.8% 
(mean±s .D. )  were digested with the specific 
enzyme. This proportion of chondroitin sulfate in 
glycosaminoglycans of the tissue examined was 
the same as observed in embryonic chick carti lage 
[36, 40]. After explant culture for 2 days, the 
proportion of the enzyme-digested glycosaminogly- 
cans in all cultures was the same as that  of day 0 
and there was no difference in this respect between 
control (92.3 _ 1.5%) and PEMF-treated 
(92.8 ± 1.9) cultures. 

EFFECTS OF PEMF ON PROTEOGLYCAN SYNTHESIS 

Incorporation rate of [85S]-sulfate into sulfated 
glycosaminoglycans 

Embryonic chick sternal  cartilage was explanted 
to culture for 48 h in the absence or presence of 
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Fro. 3. Synthesis of [3~S]-sulfated glycosaminoglycans in explant cultures. Sternal cartilage was explanted to culture 
for 2 days in either the absence (hatched columns) or presence (solid columns) of PEMF and incubated with pS]sulfuric 
acid for the final 24 h. The rate of [35S]-sulfate incorporation into glycosaminoglycans, indicative of glycosaminoglycan 
synthesis, was calculated as the recoveries of radioactivity from the explants (a) and the media (b). All data are the 
means ± S.D. of at least three measurements. 

PEMF and pS]-sulfate added during the final 24 h. 
The incorporation rate of [~sS]-sulfate into gly- 
cosaminoglycans was determined as a measure 
of proteoglycan synthesis and is shown in Fig. 3. 
It was found that  the level of newly syn- 
thesized sulfated glycosaminoglycans recovered 
from PEMF-treated explants was 76.6% lower 
than  that  from untreated controls ( P <  0.001) 
[Fig. 3(a)]. It was also found that  the PEMF 
treatment  reduced the level of newly synthesized 
glycosaminoglycans recovered from the media 
[Fig. 3(b), P < 0.02]. The reduced release of newly 
synthesized glycosaminoglycans in PEMF-treated 
cultures appears not to be a consequence of the 
reduced synthetic rate of the molecules since the 
release rate o f  newly synthesized sulfated gly- 
cosaminoglycans from cultured cartilage tissue 
is regulated by a mechanism independent from their  
synthetic rate in cartilage organ culture [47]. These 
data demonstrate that  PEMF treatment  signifi- 
cantly suppresses the biosynthesis of sulfated 
proteoglycans and their  release by embryonic chick 
sternal  cartilage explanted to culture. 

Size distribution and aggregation ability of newly 
synthesized proteoglycans 

Newly synthesized [~S]-sulfated proteoglycans 
were extracted from cultures with 4 M guanidinium 
chloride as described in Methods. This non- 
disruptive procedure resulted in an 83.1-88.3% 
extraction of labeled proteoglycans. The extracts 

were therefore regarded as an effective represen- 
tation of total  sulfated proteoglycan content  of 
the cartilage explants [48-50] and were subjected 
to s t ructural  analysis. Sulfated proteoglycans 
extracted from the explants and recovered from 
the nut r ient  media were eluted on Sepharose 
CL-2B columns under dissociative and associative 
conditions. Newly synthesized proteoglycans ex- 
tracted from the explants in control cultures 
were eluted as monomers under dissociative 
conditions and showed a broad size distribution 
[Fig. 4(a)] reflecting the polydispersed property 
of normal sulfated proteoglycans [51-52]. Under 
associative conditions, the majori ty of the 
sulfated proteoglycans aggregated with hyaluronic 
acid and eluted in the void volume. In the 
presence of PEMF, the size distribution and 
aggregation ability of newly synthesized proteo- 
glycans were identical to controls a l though the 
amount  was reduced owing to the suppressive 
effects of PEMF on sulfated proteoglycan synthesis 
[Fig. 4(b)]. The average molecular  size of newly 
synthesized proteoglycans released into the 
media in the absence of PEMF was significantly 
reduced compared with that  extracted from the 
explants. The majori ty of pS]-sulfated material  
recovered with the nut r ient  medium was unable to 
aggregate with hyaluronic acid [Fig. 4(c)], indicat- 
ing that  they might be degradation products. 
Proteoglycans released to the nutr ient  medium in 
the presence of PEMF showed a similar elution 
profile to the controls but the total  amount  was 
again reduced [Fig. 4(d)]. 
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Fro. 4. Sepharose CL-2B chromatography of newly synthesized [3~S]-sulfated proteoglycans. Sternal cartilage explants 
were cultured in the absence [(a), (c)] or presence of PEMF [(b), (d)] for 48 h and incubated with [35S]sulfuric acid for 
the final 24 h. Samples of sulfated proteoglycan from 4 • guanidinium chloride extracts [(a), (b)] and media [(c), (d)] 
were dialysed and applied to Sepharose CL-2B columns under associative (open circles) and dissociative (solid circles) 
conditions. Columns were eluted at room temperature at a rate of 3 m/h. Fractions were analyzed for radioactivity. Vo 
and Vt indicate the void volume and the total bed volume of the columns, respectively. 

Size distribution of newly synthesized sulfated 
glycosaminoglycans 

Peak fract ions eluted from S e p h a r o s e  CL-2B 
columns under  associative condit ions were pooled 
as indicated, digested with papain to generate 
glycosaminoglycan chains and subjected to Sep- 
hacryl  S-200 chromatography. The elut ion profiles 
are shown in Fig. 5. The average molecular  size of 
newly synthesized sulfated glycosaminoglycans 
recovered with the explants [Fig. 5(a)] or nu t r ien t  
media [Fig. 5(b)] was the same in PEMF-t rea ted  
and control  cul tures a l though the amount  was 
reduced in the presence of PEMF. Newly syn- 
thesized [~S]-sulfated glycosaminoglycans solubil- 
ized from cart i lage explants also were subjected to 
Sephacryl  S-200 chromatography and demonstra ted 
no difference in the size distr ibution between 
control  and PEMF treated samples (data not  
shown). 

Degree of sulfation of newly synthesized sulfated 
glycosaminoglycans 

Peak Sephacryl  S-200 fractions of sulfated 
glycosaminoglycans extracted from explants were 
pooled as indicated, dialyzed, lyophilized and 
subjected to cellulose acetate  e lectrophoresis  in 
0.1M HC1. The migrat ion distance of sulfated 
glycosaminoglycan chains was identical  in e i ther  
the absence or presence of PEMF (Fig. 6). The 
migrat ion rate  of individual polysaccharides  
depends exclusively on their  degree of sulfat ion 
under  the experimental  condit ions employed in 
this s tudy [44]. Therefore,  the sulfated glycosamino- 
glycans newly synthesized in the presence of 
P E M F  were sulfated and charged to the same 
degree as un t rea ted  controls. The mobil i ty of 
sulfated glycosaminoglycans from embryonic chick 
s ternal  cart i lage was reduced compared with 
the chondroi t in  sulfate s tandard  from shark  or 
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whale  car t i lage  due to over-sulfat ion of  the  l a t t e r  
[53-54]. 

E F ; E c T s  OF PEMF ON PROTEOGLYCAN DEGRADATION 

Degradation rate of pre-existing proteoglycans 

[~sS]Sulfuric ac id  was admin is te red  onto  the  
chor ioa l l an to ic  m e m b r a n e  of  the 6-day-old ch ick  
embryos and rad io labe led  s t e rna  ha rves ted  10 days 
later. S t e rna  were e i ther  immedia te ly  ana lyzed  for 
the  level of  the [~S]-sulfated g lycosaminoglycans  or  
explan ted  to cu l tu re  in the  absence  or  presence  of  
PEMF. The recoveries  of  [3~S]-sulfated glycosamino- 
glycans from explants  and  media  were summed and  
the percen tages  of  [s~S]-sulfated glycosaminogly-  
cans  r emain ing  in the mat r ix  af ter  cu l tu re  for 2 
days are  shown in Fig. 7. In  cont ro l  cul tures ,  
recovery  of  pre-exis t ing [~sS]-sulfated glycosamino- 
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acetate Fro. 6. Cellulose electrophoresis of newly 
synthesized [35S]-sulfated glycosaminoglycans. Pooled 
glycosaminoglycan fractions were dialyzed, lyophilized 
and subjected to electrophoresis. Samples from control 
(open circles) and PEMF-treated (solid circles) cultures 
were run on cellulose acetate strips in 0.1 M KH~PO~/ 
0.1 M HC1, pH 2.0, with a potential gradient of 5 V/cm for 
3 h. Hyaluronic acid, chondroitin sulfate and keratan 
sulfate were included as standards. Strips were either 
stained with alcian blue, denoted by the bars, or 
sectioned and analyzed for radioactivity. 

glycans from the  explants  was 86.1%. Fol lowing 
t r e a t m e n t  wi th  P E M F  over the same per iod  93.9% 
of the  pre-exist ing pS] - su l fa ted  glycosaminogly-  
cans  were recovered from the  explants  (P  < 0.05). 
These resul ts  demons t ra t e  tha t  P E M F  t r ea tmen t  
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FIG. 7. Degradation of pre-existing [35S]-sulfated gly- 
cosaminoglycans in explant cultures. Sterna were 
isolated from embryos previously administered with 
['~'~S]sulfuric acid in ovo. The fate of the pre-existing 
pS]-sulfated glycosaminoglycans after 2 days culture in 
the absence (hatched column) or presence (solid column) 
of PEMF was determined and expressed as percentage of 
radioactivity retained by the explant. All data are the 
means ± S.D. of at least three measurements. 
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FIG. 8. Sepharose CL-2B chromatography of pre-existing [35S]-sulfated proteoglycans. Sterna isolated from embryos 
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[(b), (d)] for 48 h. Samples of sulfated proteoglycan from 4 M guanidinium chloride extracts [(a), (b)] and media [(c), (d)] 
were dialysed and applied to Sepharose CL-2B columns under associative (open circles) and dissociative (solid circles) 
conditions. Columns were eluted at room temperature at a rate of 3 m/h. Fractions were analyzed for radioactivity. Vo 
and Vt indicate the void volume and the total bed volume of the columns, respectively. 

significantly suppresses t h e  in ovo-labeled pre-ex- 
isting sulfated proteoglycans of chick s ternal  
cart i lage f rom breakdown and release. 

Size distribution, aggregation ability and degree of 
sulfation of pre-existing proteoglycans 

Like the newly synthesized sul fa ted  proteogly- 
cans in vitro, about 90-92% of the in ovo-labeled 
pre-existing sulfated proteoglycans were ext rac ted  
with 4 M guanidinium chloride from the tissue and 
they displayed very similar s t ruc tura l  characteriz- 
ations. Fig. 8 shows tha t  the size distr ibution and 
aggregation ability of pre-existing sulfated proteo- 
glycans in the presence of PEM F exhibited the 
same average molecular  size and ability to 
re-aggregate as those in the absence of PEMF, and 
that  the average molecular  size and aggregation 
ability of pre-existing sulfated proteoglycans re- 

leased into the media by control  and PEMF- 
t reated cul tures also were similar. There was no 
difference in average length of pre-existing sulfated 
glycosaminoglycans re ta ined by the explants  or 
released into the medium in control  and PEMF- 
t rea ted  cul tures (Fig. 9), nor  in their  degree of 
sulfat ion or charge density (Fig. 10). These data 
demonstrate  fu r ther  tha t  P E M F  t rea tment  sup- 
presses the degradat ion of sulfated proteoglycans 
by embryonic chick cart i lage explanted to cu l ture  
wi thout  affecting thei r  molecular  s t ruc ture  or 
behavior. 

EFFECTS OF PEMF ON HISTOLOGICAL ORGANIZATION OF 

CARTILAGE 

The histological  appearance of s ternal  car t i lage 
ei ther  freshly dissected or cul tured for 48 h in the 
absence or presence of P E M F  t rea tment  is shown 
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in Fig. 11. Immediately following isolation, chick 
s ternal  cartilage showed the character is t ic  appear- 
ance of developing hyaline cart i lage [Fig. 11(a)]. 
Ch6ndrocytes were f lat tened on the surface of 
s ternum and rounded and uniformly distr ibuted at 
deeper levels. The matr ix was intensely and 
uniformly stained with safranin O th roughout  the 
full thickness of the keel of the sternum. After 48 h 
of control  culture, the deep chondrocytes were 
slightly randomly distr ibuted and matr ix staining 
was both weaker and heterogenous [Fig. 11(b)]. 
Following 48 h cul ture  in the presence of PEMF, 
the morphology and distr ibution of chondrocytes  
did not  change and the ent i re  extracel lular  matr ix  
staining was intense, a l though discrete deep areas 
were less uniformly stained [Fig. 11(c)]. Safranin O 
binds s toichiometr ical ly to e i ther  chondroi t in  
sulfate or keratan sulfate in an equivalence ratio 
very close to one: one molecule of safranin O 
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FIG. 9. Sephacryl S-200 chromatography of pre-existing 
[35S]-sulfated glycosaminoglycans. Pooled proteoglycan 
fractions were digested with papain and applied to 
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Fro. 10. Cellulose acetate electrophoresis of newly 
synthesized [asS]-sulfated glycosaminoglycans. Pooled 
glycosaminoglycan fractions were dialysed, lyophilized 
and subjected to electrophoresis. Samples from control 
(open circles) and PEMF-treated (solid circles) cultures 
were run on cellulose acetate strips in 0.1 M KH2PO~/ 
0.1 M HC1, pH 2.0, with a potential gradient of 5 V/cm for 
3 h. Hyaluronic acid, chondroitin sulfate and keratan 
sulfate were included as standards. Strips were either 
stained with alcian blue, denoted by the bars, or 
sectioned and analyzed for radioactivity. 

binds to each negatively charged group of ei ther  
polyanion [55]. The extracel lu lar  concent ra t ion  of 
the dye is propor t ional  to the concent ra t ion  of 
glycosaminoglycan. Intense and uniform staining 
of cart i lage extracel lu lar  matr ix with safranin O 
in histological  section of PEMF-trea ted  s ternum 
was in agreement  with the quanti tat ive measure- 
ment  of glycosaminoglycans in the matr ix  and 
confirmed the finding tha t  PEMF t rea tment  
conserves in vitro the extracel lu lar  matr ix  in- 
tegr i ty  of embryonic chick cart i lage in terms of 
proteoglycan composition. 

D i s c u s s i o n  

Cultured cart i lage explants provide an efficient 
model system with which to investigate the 
influence and mechanism of act ion of various 
factors  on the synthesis and degradat ion of 
extracel lu lar  matr ix components  [56]. Organ cul- 
tu re  of cart i lage has numerous  advantages over cell 
cul ture  of isolated chondrocytes:  in explant  cul ture  
the extracel lular  matr ix is intact,  chondrocytes 
maintain thei r  differentiated state and are not  
exposed to the extensive proteolyt ic  activity 
required for their  dissociation [57-58]. 

Using embryonic chick s ternal  carti lage ex- 
planted t o  culture, we have previously studied 
the effect of PEMF on the metabolism of sulfated 
glycosaminoglycans in cart i lage extracel lular  
matrix. The results showed that  PEMF modulates 
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FIG. 11. The histological organization of freshly isolated 
sternum (a) comparedwith sterna explanted to culture 
for 48 h in the absence (b) and presence (c) of PEMF. 
Tissues were processed to paraffin wax and serial 6 pm 
sections stained with safranin O and Mayer's haematoxy- 
lin (×250). 

sulfated glycosaminoglycan turnover  by embryonic 
chick sternal  carti lage explanted to cul ture 
[29-31]. Treatment  with P E M F  reduced degra- 
dation of pre-existing sulfated glycosamino- 
glycans, the synthesis of new sulfated 
glycosaminoglycans and the release of gly- 
cosaminoglycans from the explants. Each of these 
effects was significant within 48h  and was 
enhanced in the presence of retinoic acid [29-30]. 

The effects of P E M F  on embryonic chick ster- 
nal carti lage explanted to cul ture had also been 
shown to be influenced by both  the signal form 
and the frequency of t rea tment  [30-31]. In this 
study, we have focused on the optimal t reatment  
regimen of one P E M F  signal [31] and investi- 
gated its effects further. We have shown that  3 h 
t reatment  per day for 2 days significantly in- 
creases the recovery of pre-existing [35S]-sulfated 
proteoglycans retained by the explants and this 
is matched by a reduced synthet ic  rate of 
[35S]-sulfated proteoglycans. We have also shown 
both  quanti tat ively and qualitatively that  P E M F  
treatment  promotes deposit ion of glycosaminogly- 
cans in the matrix. Since DNA content  of the 
cultures was not  affected by the P E M F  exposure, 
the observed effects of P E M F  are one of direct 
modulat ion of chondrocyte activity rather  than  a 
result  of enhanced cellular proliferation. 

A consistent  finding in the present  study is that  
P E M F  treatment  prevented the release of both  
unlabeled glycosaminoglycans and labeled newly 
synthesized and pre-existing sulfated glycosamino- 
glycans from the matrix. It seems that P E M F  did 
not  act to slow down the rate of turnover of 
glycosaminoglycan by suppressing chondrocyte 
activity since proteoglycan catabolism is a well- 
known chondrocyte-mediated process [43, 59-60]. 
In addition, P E M F  stimulated a significant amount  
of glycosaminoglycan deposit ion within the carti- 
lage matrix. Therefore, the decrease in the rate of 
[35S]-sulfate incorporat ion may not be by direct 
inhibition of P E M F  on the pathway of glycosamino- 
glycan synthesis but by a secondary react ion 
regulated by reduced release of this component  
from the matrix. This proposal  is supported by a 
general unders tanding of the regulat ion of carti- 
lage extracellular  matrix. Studies indicate that  the 
homeostat ic  maintenance of proteoglycan mol- 
ecules is dependent  upon their  co-ordinated 
synthesis and degradation by chondrocytes. The 
activation of proteoglycan synthesis by loss of this 
molecule from the tissue has been widely observed 
in organ cultures of embryonic chick cartilage [36] 
and young or mature mammalian ar t icular  carti- 
lage [60-63] and in human and experimental  
osteoarthrosis  [64-66]. In contrast,  addition of 
proteoglycan to the cultures inhibited its synthesis 
[60]. As reported for many cartilage explant  
cultures, our unpublished experiments in the same 
cul ture system maintained for up to 8 days revealed 
that  the embryonic chick sternal  cartilage under- 
went initial adapti0n to culture. During the cul ture  
period, synthesis of glycosaminoglycans was 
markedly stimulated to replace initial  rapid loss of 
this component  from the tissue. The synthesis then 
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gxadually lowered to a constant  level in response to 
the lowered and stabilized release of glycosamino- 
glycans. This observation further  supports the 
proposal that  the prevention of release of gly- 
cosaminoglycans from the tissue by PEMF treat- 
ment resulted in the decrease in synthesis of the 
molecules. A different PEMF signal has also been 
found to conserve newly synthesized proteoglycans 
within the matrix of bovine ar t icular  cartilage 
explanted to culture [67]. Thus, unlike agents such 
as retinol [68] and interleukin 1 [47] which induce 
a net depletion of cartilage proteoglycan by 
decreasing synthesis and increasing release of 
sulfated glycosaminoglycans, PEMF conserves 
developing cartilage extracellular matrix. 

It can be considered that  the [~sS]-sulfate label in 
pre-existing sulfated proteoglycans extracted from 
the explants is uniformly incorporated after 
incubation for 10 days in ovo and 2 days in vitro. 
The pre-existing [35S]-sulfated proteoglycans thus 
are interpreted to represent native components laid 
down in the sternal extracellular matrix. Chroma- 
tography of 4 M guanidinium chloride extracts on 
Sepharose CL-2B demonstrated tha t  the PEMF 
does not affect either the average size of 
pre-existing proteoglycan monomers or their  abil- 
ity to aggregate with hyaluronate. Chromatography 
of papain digests of 4M guanidinium chloride 
extracts on Sephacryl S-200 followed by cellulose 
acetate electrophoresis revealed that  pre-existing 
glycosaminoglycan chain length and degree of 
sulfation also are unaffected. 

The apparent decrease in sulfated proteoglycan 
synthesis in the presence of PEMF could result  
from a decreased number of normal proteoglycan 
molecules. Alternatively, there could be fewer 
sulfated glycosaminoglycan chains per monomer, or 
the chains could be shorter or under-sulfated. The 
ability of sulfated proteoglycan to aggregate with 
hyaluronic acid also could be perturbed. The 
present studies show that  the proteoglycans 
synthesized in the presence of PEMF exhibit the 
same molecular size and that  their  ability to bind 
to hyaluronic acid and charge density is not 
affected by PEMF treatment.  

The molecular size of either pre-existing or 
newly synthesized [35S]-sulfated proteoglycans re- 
leased to the nutr ient  medium in the absence or 
presence of PEMF is consistently smaller. Material  
released to the nutr ient  medium is largely unable 
to aggregate with hyaluronic acid indicating that  
i t  possibly constitutes degradation products. How- 
ever,' the chain length of [~sS]-sulfated glycosamino- 
glycan recovered with the medium or explant is not 
significantly different from one another, indicating 
that  there is no significant degradation of 

glycosaminoglycan chains. These proteoglycan 
fragments mainly diffuse out of the matrix, possibly 
because the monomers have a non-functional 
binding region [43]. 

Treatment  for 3 h/day with the PEMF employed 
clearly conserves the sulfated proteoglycan content  
of embryonic chick sternal  cartilage explanted to 
culture wi thout  affecting sulfated proteoglycan 
s t ructure  or function. If such an effect also occurs 
in ar t icular  cartilage, PEMF could exert beneficial 
therapeutic potential  for the t reatment  of cartilage 
disorders, such as osteoarthrosis, in which proteo- 
glycan loss is usually progressive [65, 69]. However, 
it  is recognized that  the effects of PEMF are highly 
signal and tissue-specific [70]. Thus, fur ther  
evidence is needed to i l lustrate whether the normal 
or osteoarthri t ic ar t icular  cartilage in mammals 
will respond to the present signal and t reatment  
regimes in the same way. 
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